Erratum to: Parity induced edge-current saturation and current distribution in zigzag-edged graphene nano-ribbon devices
نویسندگان
چکیده
منابع مشابه
Heterospin Junctions in Zigzag-Edged Graphene Nanoribbons
We propose a graphene nanoribbon-based heterojunction, where a defect-free interface separates two zigzag graphene nanoribbons prepared in opposite antiferromagnetic spin configurations. This heterospin junction is found to allow the redirecting of low-energy electrons from one edge to the other. The basic scattering mechanisms and their relation to the system’s geometry are investigated throug...
متن کاملInelastic scattering and current saturation in graphene
We present a study of transport in graphene devices on polar insulating substrates by solving the Boltzmann transport equation in the presence of graphene phonon, surface polar phonon, and Coulomb charged impurity scattering. The value of the saturated velocity shows very weak dependence on the carrier density, the nature of the insulating substrate, and the low-field mobility, varied by the ch...
متن کاملGraphene Nano-Ribbon Electronics
We have fabricated graphene nano-ribbon field-effect transistor devices and investigated their electrical properties as a function of ribbon width. Our experiments show that the resistivity of a ribbon increases as its width decreases, indicating the impact of edge states. Analysis of temperature dependent measurements suggests a finite quantum confinement gap opening in narrow ribbons. The ele...
متن کاملElectric field effects in zigzag edged graphene nanoribbons
We investigate the magnetic ordering in zigzag edged graphene nanoribbons under cross-ribbon electric fields by using the Hubbard model within the unrestricted Hatree-Fock approximation. In the absence of applied electric field, the ground state is an “edge-magnetized state” with magnetic moments mainly localized on the edges, where the moments on the two edges are mutually antiparallel. Under ...
متن کاملGraphene-Nanodiamond Heterostructures and their application to High Current Devices
Graphene on hydrogen terminated monolayer nanodiamond heterostructures provides a new way to improve carrier transport characteristics of the graphene, offering up to 60% improvement when compared with similar graphene on SiO2/Si substrates. These heterostructures offers excellent current-carrying abilities whilst offering the prospect of a fast, low cost and easy methodology for device applica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Electronics
سال: 2011
ISSN: 1569-8025,1572-8137
DOI: 10.1007/s10825-011-0358-7